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The Rare-Variant Generalized Disequilibrium Test for
Association Analysis of Nuclear and Extended Pedigrees
with Application to Alzheimer Disease WGS Data

Zongxiao He,1 Di Zhang,1 Alan E. Renton,2 Biao Li,1 Linhai Zhao,1 Gao T. Wang,1,4 Alison M. Goate,2

Richard Mayeux,3 and Suzanne M. Leal1,*

Whole-genome and exome sequence data can be cost-effectively generated for the detection of rare-variant (RV) associations in families.

Causal variants that aggregate in families usually have larger effect sizes than those found in sporadic cases, so family-based designs can

be a more powerful approach than population-based designs. Moreover, some family-based designs are robust to confounding due to

population admixture or substructure. We developed a RV extension of the generalized disequilibrium test (GDT) to analyze sequence

data obtained from nuclear and extended families. The GDT utilizes genotype differences of all discordant relative pairs to assess asso-

ciations within a family, and the RV extension combines the single-variant GDT statistic over a genomic region of interest. The RV-GDT

has increased power by efficiently incorporating information beyond first-degree relatives and allows for the inclusion of covariates. Us-

ing simulated genetic data, we demonstrated that the RV-GDT method has well-controlled type I error rates, even when applied to ad-

mixed populations and populations with substructure. It is more powerful than existing family-based RV association methods, partic-

ularly for the analysis of extended pedigrees and pedigrees with missing data. We analyzed whole-genome sequence data from families

affected by Alzheimer disease to illustrate the application of the RV-GDT. Given the capability of the RV-GDT to adequately control for

population admixture or substructure and analyze pedigrees with missing genotype data and its superior power over other family-based

methods, it is an effective tool for elucidating the involvement of RVs in the etiology of complex traits.
Introduction

The inability of common variants identified by genome-

wide association studies (GWASs) to explain much of the

heritability of most complex diseases and the advances of

next-generation sequencing (NGS) technologies have led

to an increased interest in investigating the etiology of

complex disease due to rare variants.1,2 Most NGS associa-

tion studies use a population-based design, for which a

large number of rare-variant association methods have

been developed. There is also great interest in performing

NGS association studies with the use of family data given

that causal variants that aggregate in families usually

have larger effect sizes than those found in sporadic cases.

Family-based studies can therefore be more powerful than

population-based studies given an equivalent number of

cases.3 Study designs with familial cases might be preferred

over case-control design when families with multiple

affected individuals are available for study, especially for

complex diseases for which loci with large effects have

not been detected.4 Another advantage of a family-based

design is its ability to avoid confounding due to popula-

tion admixture or substructure. Population-based associa-

tion studies can suffer from inflated false-positive rates as

a result of population admixture or substructure, which

is an even greater problem for rare variants.5 Rare variants

are more likely to have more recent origins and are there-

fore more likely to be population specific than common
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variants, and there can be considerable differences in

the rare-variant allelic spectrum, even between European

ethnic groups. These differences can be more extreme

in the study of admixed populations, such as African

Americans and Hispanics. Family-based designs are robust

against population admixture or substructure, and signifi-

cant findings always imply association with the causal

variant or association with a variant that is in linkage

disequilibrium (LD) with the pathogenic variant.

A few tests have been proposed for family-based designs

for the analysis of rare variants in sequence data. For

example, the transmission disequilibrium test (TDT)6 has

been extended to test rare-variant association by grouping

information across multiple variants within a genomic

region.7,8 The extensions combine the benefits of rare-

variant association analysis and family-based design,

providing a robust and powerful approach to identifying

and characterizing rare disease-susceptibility variants.

However, these methods are not valid tests of LD for nu-

clear families withmore than one affected child. Moreover,

when extended pedigrees with multiple nuclear families

and/or discordant sib-pairs are available, it is advantageous

to include them in analysis because they also provide

association information. The family-based association

test (FBAT)9 has been extended to analyze sequence

data in the rare-variant burden association test.10 A vari-

ance-component extension of FBAT has also been pro-

posed, but the implemented software is applicable only
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to case-parent trio data.11 However, both FBAT extensions

suffer from potential loss of power, which can be substan-

tial for extended pedigrees, because these methods ignore

parental phenotypes. Epstein et al. proposed a statistical

approach for rare-variant association testing in affected

sibships,12 which is less than optimal because it can be

used only for analyzing affected sib-pairs in nuclear fam-

ilies (Michael Epstein, personal communication). Recently,

Sul et al. proposed RareIBD for the analysis of large ex-

tended families of arbitrary structure.13 A main assump-

tion of RareIBD is that only one founder in a family carries

a rare variant in a given gene, which is often violated espe-

cially for extended pedigrees, and violation of this assump-

tion will result in inflated type I error rates.

Here, we propose the rare-variant extension of the gener-

alized disequilibrium test (GDT). The GDT utilizes geno-

type differences in all discordant relative pairs to assess as-

sociations within a family.14 The GDT has increased power

by efficiently incorporating information beyond first-de-

gree relatives. Moreover, quantitative or qualitative covari-

ates, e.g., age, bodymass index, and smoking status, can be

incorporated in the analysis to control for confounding.

The rare-variant extension of GDT (RV-GDT) aggregates a

single-variant GDT statistic over a genomic region of inter-

est, which is usually a gene. Additionally, the RV-GDT can

incorporate weights that are based on allele frequencies

or bioinformatics tools. Using simulated genetic data,

we demonstrated that the RV-GDT method has well-

controlled type I error rates, even when applied to admixed

populations, populations with substructure, and pedigrees

with family members missing genotype data. As a compar-

ison, we also extended the pedigree disequilibrium test

(PDT)15,16 to analyze rare variants in general pedigrees.

The PDT breaks a general pedigree into case-parent trios

and discordant sib-pairs and then combines their contribu-

tions into a statistic that takes into account their non-inde-

pendence. The rare-variant extension of the PDT (RV-PDT)

is a weighted or unweighted combination of the single-

variant PDT statistic over a genomic region of interest.

The type I error was also evaluated in our simulated data

for the RV-PDT and RareIBD. Although the RV-PDT had

well-controlled type I error, the type I error for RareIBD

was inflated, especially for extended pedigrees. The power

of the RV-GDT was always substantially more powerful

than that of Epstein’s affected-sib-pair (ASP) method and

had similar or slightly higher power for nuclear families

than the FBAT and RV-PDT under a variety of disease

models. However, when applied to extended pedigrees

and/or pedigrees in which family members were missing

genotypes data, the RV-GDTwas more powerful than these

methods.

To further illustrate application of the proposed

methods, we analyzed whole-genome sequence (WGS)

data for 81 families affected by Alzheimer disease (AD

[MIM: 104300]) from the Alzheimer Disease Sequencing

Project (ADSP; dbGaP: phs000572.v6.p4). AD is a neurode-

generative disease characterized by dementia and typically
194 The American Journal of Human Genetics 100, 193–204, Februar
begins with subtle and poorly recognized memory failure

and slowly becomes more severe and incapacitating (see

GeneReviews in Web Resources). AD is genetically hetero-

geneous and has an estimated heritability of 60%–80%.17

Although GWASs have successfully identified disease-asso-

ciated loci, each locus accounts for only a small fraction of

AD susceptibility, and a large proportion of AD heritability

still remains unexplained.18 There is great interest in inves-

tigating the role of rare variants in the etiology ofAD.Appli-

cation of the RV-GDT identified suggestive associations

between AD and rare variants in AXIN1 (MIM: 603816;

GenBank: NM_003502.3) and TNK1 (MIM: 608076;

GenBank: NM_001251902.1). An association between AD

and a common variant in TNK1 was previously identi-

fied,19 and evidence of TNK1 involvement in AD has

been further supported by experimental studies.20,21

AlthoughAXIN1has not been previously shown to be asso-

ciated with AD, experimental studies suggest that there

might be a link betweenAXIN1 andAD.22–25 These findings

could provide new insights in the understanding of AD

etiology.
Material and Methods

RV-GDT
The GDTutilizes the genotype differences in all discordant relative

pairs within a family to assess the association.14 For the ith pedi-

gree, ni is the total number of genotyped individuals, nA
i is the

number of genotyped individuals who are affected, and

nU
i ¼ ni � nA

i is the number of genotyped individuals who are un-

affected. The single-variant GDT statistic for the ith pedigree is

defined as

Gi ¼
XnA

i

j¼1

XnU
i

k¼1

�
Xij �Xik

�
Cijk;

whereXij andXik are the numbers of minor alleles in the jth and kth

unaffected individuals, respectively. Cijk is 1/ni if no covariates are

included in the model; otherwise, it is given as

Cijk ¼ 8

ni

exp
n�

Zij � Zik

�T
a
o

�
1þ exp

n�
Zij � Zik

�T
a
o�3

;

where Zij and Zik are the covariate vectors for the jth and kth unaf-

fected individuals, respectively. Values in vector a are log odds ra-

tios (ORs) for the association between the covariates and the trait,

which are estimated from a logistic regressionmodel that includes

the phenotypes and covariates. The single-variant GDTstatistic for

a dataset with N independent families is given as

ZGDT ¼
PN

i¼1GiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1G

2
i

q ;

which asymptotically follows a standard normal distribution un-

der the null hypothesis of no association.14

It has been shown that an association test performed with indi-

vidual rare variants (minor allele frequency [MAF]% 1%) is under-

powered26 given the small number of observed alternative alleles

and the stringent multiple-testing correction. In order to increase

power, it is advantageous to aggregate rare-variant information
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across a region. Similar to the burden of rare variants (BRV)

method,27 here we aggregate the contributions of M variants

across a region of interest, which is given as

Gi, ¼
XM

m¼1
Gim;

where Gim is the single-locus GDT statistic on the mth variant for

the ith pedigree. In addition to aggregating the information across

multiple variants, an alternative approach is to take a weighted

sum of the contributions of each single variant, i.e.,

Gi, ¼
XM

m¼1
wmGim;

where wm is the weight assigned to the mth variant. The weights

can be inferred from MAF in control28 or complete29 samples or

from the predicted functionality of the variant,30 such as the

C-score from the Combined Annotation Dependent Depletion

(CADD) tool.31 The RV-GDT statistic is defined as

ZGDT ¼
PN

i¼1Gi,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1G

2
i,

q :

To infer its statistical significance, we apply a permutation pro-

cedure to derive empirical p values. We fix the genotypes and co-

variates for each pedigree and randomly shuffle the phenotypes

among subjects within each pedigree. The vector a, a covariate

adjustment, is also re-calculated after the phenotypes are shuffled.

To reduce computational time, we use an adaptive permutation

that evaluates the estimated p value at pre-defined checkpoints

and stops further permutations for non-significant tests.

For rare-variant association tests, a common approach is to

select a fixed MAF threshold and analyze only variants that meet

the criterion. To determine whether the MAF of a variant is below

the cutoff, one can obtain information on allele frequencies either

from the sample or from public databases, e.g., the Exome Aggre-

gation Consortium (ExAC) Browser. To avoid the implicit assump-

tion about the relationship between allele frequency and variant

functionality, we can use the variable threshold as an alternative

approach to determine which variants should be analyzed.30 The

intuition is that there exists an unknown threshold T for which

variants with MAF < T are more likely to be functional than vari-

ants with MAF > T. In this approach, the RV-GDT score is calcu-

lated for each allele-frequency threshold, and the final RV-GDT

statistic is defined as the maximum score. The p values must be in-

ferred empirically for multiple-testing correction.
RV-PDT
The PDT takes into account the difference in the number of trans-

mitted and non-transmitted minor alleles from parents to affected

siblings and the difference in the number of minor alleles between

affected and unaffected siblings.15,16 For the ith pedigree, nT is the

number of case-parent trios from informative nuclear families

(at least one affected child, both parents genotyped at the marker,

and at least one heterozygous parent), and nS is the number of

informative discordant sib-pairs (at least one affected and one un-

affected sibling with different marker genotypes). The single-

variant PDT statistic for the ith pedigree is defined as

Pi ¼
XnT

k¼1
Tik þ

XnS

j¼1
Sij;

where Tik is the difference between the number of minor alleles

transmitted and the number of minor alleles not transmitted
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from a heterozygous parent in the kth trio, and Sij is the difference

between the number of minor alleles in affected siblings and those

in unaffected siblings in the jth discordant sib-pair. Let N be the

number of independent informative pedigrees (at least one infor-

mative nuclear family and/or discordant sibship); then, the single-

variant PDT statistic is defined as

ZPDT ¼
PN

i¼1PiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1P

2
i

q :

We can sum the contributions of each single variant across a

region by

Pi, ¼
XM

m¼1
Pim;

where Pim is the single-variant PDT statistic on the mth variant in

the ith pedigree, andM is the total number of variants in the region

of interest. We can also consider the weighted sum of multiple

variants, which is similar to the RV-GDT. The RV-PDT statistic is

defined as

ZPDT ¼
PN

i¼1Pi,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1P

2
i,

q :

The p values can be inferred empirically via haplotype permuta-

tion, which is able to control the type I error in the TDT-based

tests.7 For each pedigree, we fix the founders’ genotypes and

obtain the genotypes of the non-founders by pairing a randomly

selected paternal and maternal haplotype. Adaptive permutation

can also be used to reduce computational time.
Simulation Framework
Generation of Family Data

To evaluate the performance of the RV-GDT, we compared it to

other family-based association methods, including FBAT, RV-PDT,

and Epstein’s ASPmethod, through simulating and analyzing fam-

ily-based exome sequence data. Genotypes were simulated for

autosomal genes across the genome on the basis of the observed

variant sites and their corresponding MAFs obtained from the

non-Finnish European and African and African American popula-

tions recorded in the ExAC Browser32 (17,987 autosomal genes

for 33,370 subjects in the non-Finnish European population

and 17,892 autosomal genes for 5,203 subjects in African and

African American populations). Family data were generated with

RarePedSim,33 which is able to effectively simulate sequence-based

genotypes for any arbitrarily complex pedigree structure by con-

ditioning on observed phenotypic data and incorporating a

user-specified phenotype model and variant information. Using

ExAC MAFs, we generated genotypes under linkage equilibrium

(after assigning haplotypes to founders), which then segregated

within the generated pedigrees.

Disease Model

The disease prevalence is assumed to be 1%, and the disease status

for each subject is assigned on the basis of the multisite genotypes

consisting of rare nonsense, missense, and splice-site variants

(MAF % 1% in its corresponding ExAC population). An OR of

2.5 is assigned to each variant that is deemed causal, and the dis-

ease probabilities of all variants within a gene are computed on the

basis of a multiplicative mode of inheritance.33

Evaluation of Type I Error

To evaluate the type I error rate of the RV-GDT and RV-PDT, we set

the OR of the causal variant to 1 (no association between genetic
n Journal of Human Genetics 100, 193–204, February 2, 2017 195



Figure 1. Pedigree Structures Used in the Simulation Studies
(A) Discordant nuclear sib-pair: the family contains parents, an affected child, and an unaffected child.
(B) Affected sib-pair: the nuclear family contains parents and two affected children.
(C) Extended three-generation pedigree.
variant and phenotype) and used the variant information from

the ExAC non-Finnish European population to generate the fam-

ily data. We considered four different types of family data: 1,000

nuclear families with one affected child and one unaffected child

(discordant sib-pair; Figure 1A), 1,000 nuclear families with two

affected children (affected sib-pair; Figure 1B), 1,000 extended

pedigrees with two affected individuals in the third generation

(extended pedigree; Figure 1C), and a mixture of these three pedi-

gree structures (500 discordant sib-pairs, 250 affected sib-pairs,

and 250 extended pedigrees). Genotype data were simulated for

all autosomal genes across the genome, and genes with at least

three informative variant sites were analyzed. Type I error rates

were evaluated as the proportion of genes with a p value less

than 0.05 and 0.005. The p values were obtained empirically

via 100,000 permutations. Moreover, to demonstrate that the

RV-GDT can appropriately handle pedigrees with missing data,

we analyzed the data after removing genotype data from 50% of

the founders.

We also evaluated the type I error rates of RV-GDTwhen there is

population admixture or population substructure. Genotype data

were simulated for 17,873 autosomal genes present in both the

ExAC non-Finnish European and African and African American

populations. To generate family data from an admixed population,

we randomly generated the haplotypes of the founders in each

pedigree from the European or African population with a proba-

bility of 20% or 80%, respectively. To generate family data with

population substructure, we simulated 50% of the families with

ExAC non-Finnish European variant information and simulated

the other 50% of the families with ExAC African and African

American variant information.

We also evaluated the type I error rates of RareIBD (version 1.1)13

in our simulation framework. We applied a maximum of 100,000

inheritance vector samplings to pre-compute the mean and stan-

dard deviation of the statistic and used 10,000 gene-dropping per-

mutations to estimate the p values.

Power Evaluation

To evaluate the power of RV-GDT, we simulated 1,000 families of

each pedigree structure shown in Figure 1 and a mixture of the

three pedigree structures (500 discordant sib-pairs, 250 affected

sib-pairs, and 250 extended pedigrees) by using ExAC non-Finnish

European variant information. Genotype data were generated

for autosomal genes across the genome when 75% of the rare

nonsense, missense, and splice-site variants were randomly

selected to be causal with an OR of 2.5. Genes with at least three
196 The American Journal of Human Genetics 100, 193–204, Februar
informative variant sites were analyzed, and power was evaluated

as the proportion of genes with a p value less than 0.05. To assess

the influence of missing founder genotype data on power, we used

a probability to determine which founders were missing all of

their genotype data and considered three different probabilities

(0%, 25%, and 50%). To further evaluate the power of RV-GDT

for extended pedigrees in which family members are missing

genotype data, we determined whether each parent, regardless

of being a founder or non-founder (subjects in the first two gener-

ations), had a 0%, 25%, 50%, or 75% probability of missing all of

their genotype data. Power was evaluated when 50%, 75%, and

100% of the randomly selected rare nonsense, missense, and

splice-site variants were causal with an OR of 2.5.

We compared the power of the RV-GDTmethod to that of other

family-based association tests, including Epstein’s ASP method

(one-sided test),12 RV-PDT, and FBAT10 (version 2.0.4, with the

‘‘-v0’’ option to calculate unweighted rare-variant statistics).

Epstein’s ASP method requires estimation of identity by descent

(IBD) sharing between affected siblings. Because the IBD-sharing

information is known in the simulated data, we used the exact

IBD sharing in the power evaluation. The phase information

generated during simulation of family data was used for haplotype

permutation in the RV-PDT. Both Epstein’s ASP method and FBAT

software report analytical p values. For RV-GDT and RV-PDT, we

performed one-sided tests and obtained p values empirically by

performing 2,000 permutations.
Application to AD Data
Description of the ADSP Data

The WGS data from 112 families were downloaded from dbGaP:

phs000572.v6.p4. Study subjects with phenotypes coded as ‘‘defi-

nite AD,’’ ‘‘probable AD,’’ or ‘‘possible AD’’ were labeled as affected,

and all other subjects were labeled as unaffected. The mean age of

onset for AD was 72.63 years with a standard deviation of 8.46. In

all 112 families selected for generation ofWGS data, no more than

75% of affected members were positive for APOE4 (MIM: 107741),

and no family members were homozygous for APOE4. Families in

whom all sequenced subjects were affected were excluded from

our analysis, which resulted in 81 families (21 nuclear and 60

extended), including 414 subjects with WGS data (316 affected

and 98 unaffected; 167 male and 247 female) and 418 subjects

without WGS data (22 affected and 396 unaffected; 221 male

and 197 female). Their pedigrees and ethnicities (46 Dominican,
y 2, 2017



Table 1. Type I Error Rate for RV-GDT at a Levels of 0.05 and 0.005

Discordant Sib-Pair Affected Sib-Pair Extended Pedigree Mixed Family Types

a ¼ 0.05 a ¼ 0.005 a ¼ 0.05 a ¼ 0.005 a ¼ 0.05 a ¼ 0.005 a ¼ 0.05 a ¼ 0.005

RV-GDT 0.047 0.0048 0.050 0.0051 0.051 0.0049 0.051 0.0048

Each Founder Has a 50% Probability of Missing All Genotype Data

RV-GDT 0.051 0.0050 0.051 0.0049 0.049 0.0047 0.051 0.0047

80% African and 20% European Population Admixture

RV-GDT 0.051 0.0049 0.051 0.0048 0.048 0.0047 0.050 0.0051

50% African and 50% European Families

RV-GDT 0.050 0.0051 0.049 0.0053 0.048 0.0052 0.051 0.0048

We simulated 1,000 families for each pedigree structure shown in Figure 1 and mixed pedigree structures. Genotype data were generated for all autosomal genes
across the genome with an OR of 1.0, and type I error rate was defined as the proportion of genes with a p value less than 0.05 or 0.005. We used variant infor-
mation for 17,987 autosomal genes from the ExAC non-Finnish European population to generate family data when each founder had a 0% or 50% probability of
missing genotype data. We used variant information for 17,873 autosomal genes present in both the ExAC non-Finnish European population and African and
African American populations to generate family data with population admixture and substructure.
31 of European descent, 2 Puerto Rican, 1 Dutch isolate, and 1 Af-

rican American) are shown in Figure S2 and Table S2, respectively.

Generation, Quality Control, Annotation, and Analysis of WGS Data

Genomic DNA were sequenced at the Broad Institute, Human

Genome Sequencing Center at the Baylor College of Medicine,

and McDonnell Genome Institute at Washington University.

Reads were mapped to the GRCh37 reference genome assembly

with the Burrows-Wheeler Aligner.34 BAM files from all three

sequencing centers were collected, and genotype calling and pri-

mary quality control (QC) were performed by both the Broad Insti-

tute (Broad pipeline) and the Baylor College of Medicine Human

Genome Sequencing Center (Baylor pipeline). The Broad and Bay-

lor pipelines used the Genome Analysis Toolkit HaplotypeCaller35

and Atlas2 software,36 respectively, for genotype calling.

For the Broad pipeline, those variants that did not ‘‘pass’’ Variant

Quality Score Recalibration were removed. For the Baylor pipeline,

variants with a mapping score < 0.80 were deleted, and genotypes

that did not ‘‘pass’’ the Sample Genotype Filter or that had a read

depth < 10 or an out-of-range ratio of variant reads to total read

depth (%0.75 or R0.25) were deleted. For both pipelines, the

following types of variants were excluded: monomorphic variants,

those with a call rate% 80%, those with excessive heterozygosity,

and those with an average mean read depth > 500.

Once primary QC was completed for the Broad and Baylor

pipelines, consensusgenotypesweredeterminedbykeepingconcor-

dant variants and excluding variants inwhichadifferent alternative

allele was called between the two pipelines. After consensus calling,

a second round of variant-level QC was applied to remove any

variants that were monomorphic, had >20% missing genotypes,

or had an excessive number of heterozygous genotypes. QC was

performed by the QC working group of the ADSP.

We used the RefGene database to select variants located in exon

regions and included only single-nucleotide variants (SNVs)

within the autosomal exome coding region in our analysis. Men-

delian inconsistencies were identified and removed with PLINK

software.37 Gene regions were assigned according to RefSeq defi-

nitions, and ANNOVAR was used to annotate variant sites.38

Variants within regions containing copy-number variants or pseu-

dogenes were excluded, and variants that were either nonsynony-

mous or putative splice sites were included in the analysis. Only

variants that were absent or had aMAF% 2% in the ExAC Browser
The America
were analyzed. We used Variant Association Tools (VAT) to

perform the variant-selection procedures described above.39

Only genes with at least three variant sites were analyzed, leaving

8,891 genes for analysis.
Results

Type I Error Rate

When the family data were generated under the null hy-

pothesis of no association with ExAC non-Finish European

variant information, type I error of the RV-GDT was well

controlled for the family structures shown in Figure 1

and also for the mixed family structures. Type I error rates

were evaluated at a ¼ 0.05 and a ¼ 0.005, the results of

which are shown in Table 1. Additionally, the quantile-

quantile plot of the �log10p values demonstrates that

type I error was well controlled (Figure S1). The type I error

was also well controlled for RV-PDT for all family structures

(data not shown).When founders had a 50% probability of

missing all of their genotype data, the RV-GDTmethod still

had proper control of type I error rates for all pedigree and

mixed family structures (Table 1 and Figure S1).

To demonstrate that the RV-GDT can adequately control

for population admixture, we generated data for pedigrees

with 80% African and 20% European admixture. We also

evaluated whether type I error was well controlled in the

presence of European-African substructure by simulating

and analyzing data with 50% European pedigrees and 50%

African pedigrees. For both scenarios, type I error was well

controlled (Table 1 and Figure S1), suggesting that the RV-

GDT is robust to population admixture and substructure.

We also evaluated the type I error rates of RareIBD by

using simulated family data, and the results are shown

in Table S1. We observed inflated type I error rates for

discordant sib-pairs and extended pedigrees in each sce-

nario evaluated (i.e., non-Finnish European population,

missing founder data, African-European substructure, and
n Journal of Human Genetics 100, 193–204, February 2, 2017 197



Table 2. Power Comparison of Epstein’s ASP Method, RV-PDT, FBAT, and RV-GDT when Founders Are Missing Different Proportions of
Genotype Data

Method

Discordant Sib-Pair Affected Sib-Pair Extended Pedigree Mixed Family Types

0%a 25%a 50%a 0% 25% 50% 0% 25% 50% 0% 25% 50%

Epstein’s ASPb – – – 0.23 0.23 0.23 – – – 0.10 0.10 0.10

FBAT 0.46 0.40 0.35 0.80 0.71 0.54 0.42 0.38 0.34 0.61 0.52 0.38

RV-PDT 0.51 0.45 0.42 0.79 0.70 0.52 0.48 0.45 0.41 0.63 0.55 0.43

RV-GDT 0.53 0.48 0.45 0.81 0.75 0.62 0.64 0.62 0.60 0.66 0.62 0.56

Genetic variant data were generated for 1,000 families of each pedigree structure shown in Figure 1 and mixed pedigree structures with the use of ExAC
non-Finnish European variant information. Genotype data were generated for 17,987 autosomal genes across the genome when 75% of the rare nonsense,
missense, and splice-site variants were randomly selected to be causal with an OR of 2.5, and power was evaluated as the proportion of genes with a p value
< 0.05.
aProbability that each founder is missing all genotype data.
bPower was evaluated under the assumption that the exact IBD sharing between affected sib-pairs is known. Unknown IBD sharing and non-simulated data would
reduce the power.
African-European admixture) and deflated type I error rates

for affected sib-pairs. For example, when data were gener-

ated with substructure (50% African and 50% European)

and analyzed, the discordant sib-pairs and extended pedi-

grees had type I error rates of 0.063 and 0.477, respectively,

at a¼ 0.05, whereas the affected sib-pairs had a type I error

rate of 0.030.

Power Evaluation

We compared the power of RV-GDT with that of Epstein’s

ASP method, RV-PDT, and FBAT for a variety of pedigree

structures (Figure 1) when 75% of the rare variants were

causal with an OR of 2.5. Additionally, we evaluated the ef-

fect of missing founder data on power by using different

probabilities (0%, 25%, and 50%) to determine whether a

founder was missing genotype data. The power of RV-GDT

and other methods when founders were missing genotype

data is shown in Table 2. When none of the founders were

missing data, the differences in power between RV-GDT,

RV-PDT, and FBAT were small for nuclear families (discor-

dant and affected sib-pairs), but all methods were consider-

ably more powerful than Epstein’s ASP method. When

1,000 discordant sib-pairs were analyzed, the power of

FBAT, RV-PDT, and RV-GDT was 0.46, 0.51, and 0.53,

respectively, whereas Epstein’s ASP method was unable to

analyze these data because there were no affected sibships.

When 1,000 affected sib-pairs were analyzed, the power

of FBAT, RV-PDT, and RV-GDT was 0.80, 0.79, and 0.81,

respectively, whereas the power of Epstein’s ASP method

was 0.24. However, RV-GDT had considerably higher po-

wer than the other methods, i.e., FBAT and RV-PDT, which

can analyze extended pedigrees. When 1,000 extended

pedigrees were analyzed, the power of FBAT and RV-PDT

was 0.42 and 0.48, respectively, whereas the power of

RV-GDT was 0.64. Moreover, the power of RV-GDT was

higher than that of the other methods when founders

were missing genotype data. When ~25% of the founders

were missing their genotype data, the power of FBAT,

RV-PDT, and RV-GDT for 1,000 extended pedigrees was

0.38, 0.45, and 0.62, respectively; when the missing prob-
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ability was increased to 50%, the power of FBAT and

RV-PDT was 0.34 and 0.41, respectively, whereas RV-GDT

still had a power of 0.60.

To further evaluate the power of RV-GDT when family

members are missing genotype data, we simulated 1,000

extended pedigrees under different proportions of causal

variants (50%, 75%, and 100%) with an OR of 2.5. When

none of the pedigree members were missing genotype

data, the power of the RV-GDT was higher than that of

RV-PDT and FBAT (Figures 2A–2C). For example, when

100% of the rare nonsense, missense, and splice-site vari-

ants were causal and none of the pedigree members

were missing genotype data, the power of FBAT, RV-PDT,

and RV-GDT was 0.63, 0.69, and 0.81, respectively

(Figure 2C). When founders had a 25%, 50%, or 75% prob-

ability of missing genotype data, the power decreased for

each method as the percentage of founders missing geno-

type data increased (Figures 2A–2C). However, the RV-GDT

still had considerably higher power than the other

methods, not only because its initial power was higher

than that of the other methods but also because it lost

less power as the percentage of founders missing genotype

data increased. For example, when 100% of the rare vari-

ants were causal and the probability that founders were

missing genotype data was increased from 0 to 50% (Fig-

ure 2C), the FBAT and RV-PDT power was reduced by

12.70% (from 0.63 to 0.55) and 10.14% (from 0.69 to

0.62), respectively, whereas RV-GDT had a 3.84% (from

0.81 to 0.78) loss of power. Similar patterns of decreasing

power were observed when family members in the first

two generations had a 25%, 50%, or 75% probability of

missing all of their genotype data, regardless of whether

they were founders or non-founders (Figures 2D–2F). For

the model in which 100% of the rare variants were causal

(Figure 2F), the power of the FBATand RV-PDTwas reduced

by 20.63% (from 0.63 to 0.50) and 15.94% (from 0.69 to

0.58), respectively, when the probability of individuals

missing their genotype data was increased from 0% to

50%, whereas the power for RV-GDT was reduced by

8.64% (from 0.81 to 0.74).
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Figure 2. Power Comparisons of FBAT, RV-PDT, and RV-GDT for Extended Pedigrees with Family Members Missing Genotype Data
Genetic variant data were generated for 1,000 extended pedigrees with ExAC non-Finnish European variant information. Different pro-
portions of the rare nonsense, missense, and splice-site variants were deemed to be causal: 50% (A and D), 75% (B and E), and 100%
(C and F) with an OR of 2.5.
(A–C) Power comparisons when the probability that each founder was missing all genotype data ranged from 0% to 75%.
(D–F) Power comparisons when the probability that each parent (founder or non-founder) wasmissing all genotype data ranged from 0%
to 75%.
Application to AD Data

We applied the RV-GDTmethod to analyzeWGS data from

the ADSP dataset. All pedigrees have at least one parental

family member who is missing WGS data. Given the small

sample size, application of the RV-GDT did not detect asso-

ciations with exome-wide significance of 2.50 3 10�6

(Bonferroni correction for 20,000 genes). The most signif-

icant associations with AD were observed for MARCH10

(MIM: 613337; GenBank: NM_001100875.1; p value ¼
5.0 3 10�5), AMBN (MIM: 601259; GenBank:

NM_016519.5; p value ¼ 9.0 3 10�5), TCOF1 (MIM:

606847; GenBank: NM_000356.3; p value ¼ 2.0 3 10�4),

AXIN1 (p value ¼ 2.5 3 10�4), and TNK1 (p value ¼
6.0 3 10�4). The ExAC MAFs of the variants within these

genes, along with annotations from dbNSFP (version

2.9)40 (which include GERP,41 PhyloP,42 and CADD31

scores and Functional Analysis through Hidden Markov

Models [fathmm],43 MutationTaster,44 PolyPhen-2,45

PROVEAN,46 and SIFT47 prediction), are shown in Table

S3–S7.

Eight missense variants were observed in MARCH10 (Ta-

ble S3). 53 alternative alleles were observed in family mem-

bers with AD, whereas six were observed in unaffected in-

dividuals. Except for SNV rs13801568, which had the same
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number of alternative alleles in affected and unaffected

family members, all other variant sites had higher alterna-

tive-allele counts in affected subjects than in unaffected

family members. Five SNVs occurred at conserved nucleo-

tides, and two SNVs were deemed to be deleterious by at

least three of six bioinformatics tools (CADD, fathmm,

MutationTaster, PolyPhen-2, PROVEAN, and SIFT). Eight

nonsynonymous variants were observed in AMBN, and

41 and 4 alternative alleles of these variants were observed

in affected and unaffected family members, respectively

(Table S4). All SNVs except rs150017698 had a higher

number of alternative alleles in affected family members

than in unaffected family members. Four variants in

AMBN were deemed to be conserved by both GERP and

PhyloP and were predicted to be deleterious by at least

three of six bioinformatics tools. 19 missense variants

were observed in TCOF1—78 and 12 alternative alleles

were observed in affected and unaffected family members,

respectively (Table S5). Although only four variants were

deemed to be conserved by both GERP and PhyloP, 12 var-

iants were judged to be deleterious by at least three of six

bioinformatics tools. AXIN1 included eight nonsynony-

mous variants; 34 alternative alleles were observed in

affected family members, and one alternative allele was
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observed in an unaffected family member, and all variants

had a higher number of alternative alleles in affected fam-

ily members than in unaffected family members (Table S6).

Six variants occurred at conserved nucleotides; however,

none of the eight variants were deemed to be deleterious

by at least three of six bioinformatics tools. Of the six var-

iants observed in TNK1, 21 alternative alleles were

observed in affected family members, and no alternative

alleles were observed in unaffected family members (Table

S7). Four variants were deemed conserved by both GERP

and PhyloP, and four variants were deemed to be delete-

rious by at least three of six bioinformatics tools.

rs201180891 occurs at a highly conserved residue and is

predicted to be deleterious in all available bioinformatics

results, and four affected family members were observed

to be carriers of the alternative allele of this variant. The

variant c.923T>A (p.Met308Lys) (GenBank: NM_003985.

3) was not found in ExAC samples, and two individuals

affected by AD are carriers of an alternative allele. This

variant also occurs at a highly conserved residue and is pre-

dicted to be deleterious by five of six bioinformatics tools.
Discussion

We extended the family-based GDT to allow for the anal-

ysis of rare variants so that the method could be applied

to association analysis of WES or exome sequence data.

Our simulation studies demonstrated that the RV-GDT

has well-controlled type I error rates, even when applied

to admixed populations or populations with substructure.

The RV-GDT has greater power than other family-based

rare-variant association methods and is substantially

more powerful when applied to extended pedigrees and/or

pedigrees in which family members are missing genotype

data. There are advantages to performing family-based as-

sociation studies over employing population-based de-

signs. Family-based studies can have higher power given

an equivalent number of cases because they can involve

more pathogenic susceptibility variants with larger effect

sizes than those observed for sporadic disease.3 Addition-

ally, many family-based association methods can control

for population admixture and substructure on a local level,

whereas for population-based designs, the inclusion of

principal or multi-dimensional scaling components can

control for population admixture and substructure only

on a global level, which might not be sufficient for rare-

variant association studies.48 However, family-based de-

signs do have their drawbacks; compared with popula-

tion-based studies, they require more resources for the

recruitment of probands and their relatives. For family-

based designs, genotype data are often missing because

of unascertainable family members, e.g., non-paternity

and deceased parents from late-onset disease. Usually, fam-

ily data are composed of many different types of pedigree

structures, and there are family members without geno-

type data, as observed in the 81 AD-affected families
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analyzed here (see Figure S2). The ability to analyze family

data, including extended pedigrees and/or pedigrees in

which family members are missing genotypes data, with

minimal loss of power makes the RV-GDT an extremely

valuablemethod for detecting associations and elucidating

the genetic etiology of complex traits.

RareIBD has amain assumption that only one founder in

each family carries a mutation for a specific rare variant.

Violation of this assumption will result in an inflated test

statistic.13 Complex traits, such as AD and coronary heart

disease, have relatively high prevalences; therefore, a pedi-

gree might have multiple affected individuals who do not

have the same causal variants. Unlike for Mendelian dis-

eases, the assumption that only one founder in a family

carries the pathogenic susceptibility variant might not be

valid for complex traits. Despite the fact that RareIBD

(version 1.1) excludes variants violating this assumption,

our simulations showed extremely inflated type I error

rates for extended pedigrees. Our simulation framework

is based on ExAC variant information for all genes, which

represents exome sequence data more realistically than

generating data for a single genomic region by using a pop-

ulation demographic model (the latter was previously used

for evaluating type I error of RareIBD13).We also evaluated

the power of RareIBD when 75% of rare nonsense,

missense, and splice-site variants were randomly selected

to be causal with an OR of 2.5. Although type I error was

slightly inflated, the power of RareIBD was 0.32 when

1,000 discordant sib-pairs were analyzed, whereas the

power of FBAT, RV-PDT, and RV-GDT was 0.46, 0.51, and

0.53, respectively. When 1,000 affected sib-pairs were

analyzed, the power of RareIBD was 0.79, comparable to

that of FBAT (0.80), RV-PDT (0.79), and RV-GDT (0.81).

We did not evaluate power for extended pedigrees because

it would not be valid given the extremely inflated type I

error rates for RareIBD.

RareIBD (version 1.1) can analyze only families from sin-

gle populations because of differences in the allelic spec-

trum between populations. Families of different ancestries

need to be analyzed separately, and meta-analysis needs to

be performed, which can lead to a loss of power. Genetic

studies of complex traits are often composed of families as-

certained from multiple populations. For example, ADSP

includes both families of European descent and African

American and Dominican families. Even the analysis of

families of European descent can still be problematic,

given that for rare variants, the allelic spectrum can differ

greatly even between adjacent populations, e.g., Ashkenazi

and other Eastern European populations.49

Neither RV-GDT nor FBAT requires haplotyping,

IBD-sharing estimation, or imputation of missing geno-

types, which avoids the potential decrease in power due

to loss of information and/or inclusion of noise. For Ep-

stein’s ASP method, IBD sharing between siblings must

be estimated before statistical analysis. RV-PDT requires

haplotype information in order to perform haplotype per-

mutation, which is necessary to control type I error in the
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presence of LD between variants.7 Even though some algo-

rithms can perform haplotyping and/or IBD-sharing esti-

mation with acceptable accuracy, the potential loss of in-

formation and inclusion of noise can greatly jeopardize

power. In our power evaluation of Epstein’s ASP method,

we used exact IBD sharing in the simulated data. There

would be a loss of power if the IBD-sharing information

were inferred, for example, via MERLIN. Especially when

founders are missing, it would introduce more uncer-

tainties and lead to a further decrease in power. RareIBD re-

quires family data without missing genotypes. Missing ge-

notypes are imputed, and the most likely genotypes are

analyzed. Although family-based imputation can reach

relatively high accuracy, association testing with the

most likely imputed genotype can lead to type I error infla-

tion.50 More experiments are needed to investigate how

imputed genotypes can be correctly incorporated in fam-

ily-based association studies.

Adjustment for non-confounding covariates that are

known to influence the trait can reduce spurious asso-

ciations due to sampling artifacts or biases in study

design.51 However, caution should be exercised for deci-

sions about whether to incorporate covariates in the asso-

ciation analysis of binary traits. It has been shown for

GWASs that including known covariates can reduce the

power to identify associated variants when the disease

prevalence is low. On the other hand, including non-con-

founding predictive covariates when disease prevalence is

sufficiently high (>20%) will often lead to an increase in

power.52 The RV-GDT can incorporate covariates in the

analysis, but it does not provide an evaluation of covariate

significance and also cannot be used for covariate selec-

tion. The FBATcan also incorporate covariates, whereas Ep-

stein’s ASPmethod and RV-PDT have not been extended to

adjust for covariates.

It was previously shown that integrating information on

variant allele frequencies from population-based data into

family-based studies can be useful for association studies of

rare variants.53 Jiang et al. suggested incorporating popula-

tion-control-based weights into the TDT framework to

potentially up-weight pathogenic susceptibility variants,

down-weight neutral variants, and also assign the direc-

tion of the effect for pathogenic variants.8 In our simula-

tion, no improvement in power was observed for either

RV-GDT or RV-PDT when weights were incorporated with

data from population controls. In fact, the incorporation

of weights from population controls led to slightly less

power than not using any weights. Genetic data for

1,000 extended pedigrees were simulated with ExAC

non-Finnish European variant information, and 75% of

the rare nonsense, missense, and splice-site variants were

randomly selected to be causal with an OR of 2.5. We

also generated 20,000 population controls, and the

weights inferred the control data, as suggested by Jiang

et al. The power of the RV-GDT decreased from 0.81 to

0.78, and the power of the RV-PDT also decreased from

0.79 to 0.77. This is not surprising given that it has previ-
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ously been shown that decreases in power can occur

when weights are not optimal.54 In our simulations, the

controls were generated from the same population as the

family data, but because of random variability, they were

not always optimal. The reduction in power could be

even greater if controls are drawn from a different popula-

tion. Moreover, how to handle variants that are not pre-

sent in population controls is a practical problem that

needs to be addressed. For example, 10.41% of variants

analyzed in the AD pedigrees are not present in the ExAC

Browser, which is one of the largest publicly available

databases.

The application of the RV-GDT in the analysis of AD ped-

igrees highlights its applicability to family-based studies.

The pedigree structures of this dataset are highly heterozy-

gous, and each pedigree has at least one family member

who has not been sequenced (see Figure S2). RV-GDT has

fewer constraints on pedigree structure than Epstein’s

ASP method and RV-PDT, and it can analyze any pedigree

as long as it includes both affected and unaffected subjects.

FBAT can analyze most pedigree structures, but those with

missing parental data often cannot be analyzed, especially

when there are no unaffected offspring. Epstein’s ASP

method is only applicable to analyzing affected sibships

in nuclear pedigrees, and it needs the estimated IBD

sharing between sibships, which is problematic for pedi-

grees missing parental genotypes. Without parental geno-

types, IBD sharingmust be estimated from identity by state

(IBS) sharing and variant allele frequencies. It is unclear

how well Epstein’s ASP method performs in this situation.

The majority of affected sibships in the AD pedigrees are

missing both parental genotypes, and no single affected

sibship has genotype data for both parents. The RV-PDT re-

quires nuclear families with informative case-parent trios

and/or discordant sib-pairs to detect association, but the

haplotype permutation is necessary for the RV-PDT to con-

trol type I error,7 and the haplotype permutation needs the

complete nuclear family or reconstructed haplotypes for

the missing founders. No single AD pedigree has complete

parental WGS data, and the RV-PDT hasn’t been extended

to analyze family data with reconstructed haplotypes;

therefore, it is not possible to analyze the AD pedigrees

with the RV-PDT. The AD data could not be analyzed

with RareIBD given the extreme inflation of type I error

for extended pedigrees. Of the 81 AD-affected families,

25 cannot be analyzed by the FBAT (see Figure S2). More-

over, the FBAT returned ‘‘NaN’’ (not a number) when the

genotype data for TCOF1 in the AD data were analyzed.

The p values of FBAT for MARCH10, AMBN, AXIN1, and

TNK1 were 0.06, 0.30, 0.04, and 0.04, respectively, and

all p values were considerably less significant than those

obtained from the RV-GDT.

The application of the RV-GDT on WGS data from

81 AD-affected families identified potential involvement

of AXIN1 (16p13.3) and TNK1 (17p13.1) in this neurode-

generative disease. Previously, a SNP-based association

study detected an association between rs1554948, which
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is within TNK1, and late-onset AD.19 Our study implicates

multiple rare variants in TNK1 as a potential underlying

cause of AD. We observed 21 alternative alleles in 21

affected family members and no alternative alleles in unaf-

fected family members. Out of 21 familymembers carrying

TNK1 alternative alleles, only two of them were APOE4

positive. The association between rare variants in TNK1

and AD is consistent with functional studies of its protein.

TNK1 encodes a non-receptor tyrosine kinase andmediates

intracellular signaling. Activated TNK1 has been reported

to facilitate tumor necrosis factor alpha (TNFa)-induced

apoptosis, which suggests its involvement in TNFa

signaling and neuronal cell death.20 The involvement of

TNK1 in AD pathogenesis could also be through its interac-

tion with phospholipase C (PLC). TNK1 has been reported

to be associated with PLC gamma 1,21 and multiple studies

have observed aberrant PLC activity in AD brains.19 Iden-

tification of the involvement of TNK1 in AD etiology pro-

vides new insights that could be used for prevention and

treatment. Although the association between AD and var-

iants in AXIN1 has not been reported previously, the iden-

tification of AXIN1 is also consistent with experimental

findings. AXIN1 encodes a scaffolding protein that plays

a critical role in regulating GSK3-mediated phosphoryla-

tion of the protein tau.22 Axin negatively affects tau phos-

phorylation by GSK3,23 and phosphorylated tau has a

decreased capacity to bind and stabilize microtubules.24

The abnormally phosphorylated tau has been observed

in populations of AD-affected individuals at clinicopatho-

logical levels.25 These findings suggest that abnormal

expression of AXIN1 might contribute to tau pathology

in AD. No previous association studies have implicated

MARCH10, AMBN, or TCOF1 in the etiology of AD. Addi-

tionally, no functional studies support the involvement

of these genes in AD etiology. The associations between

AD and MARCH10, AMBN, and TCOF1 might be false

positives, and future replication studies will allow for the

elucidation of whether these genes are involved in the eti-

ology of AD.

The WGS data on the analyzed 81 families is part of the

ADSP Discovery Phase, which will be followed by the Dis-

covery Extension Phase and the Follow-Up Phase. The Dis-

covery Extension Phase will include WGS data on 107

additional family members of the pedigrees studied in

the Discovery Phase and additional WGS data on 213 fam-

ily members from new pedigrees. The Follow-Up Phase

will include more families undergoing whole-genome or

exome sequencing, and individual investigators will share

their sequence data with the ADSP. These additional

sequence data will permit a replication study.

The RV-GDT method provides a robust and powerful

way to use family-based sequence data to identify associa-

tions between complex disease and rare variants. Given its

capability of adequately controlling for population admix-

ture or substructure and its superior power over other

methods for extended pedigrees and pedigrees with

missing data, the RV-GDT is extremely beneficial in eluci-
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dating the involvement of rare variants in the etiology of

complex traits. The RV-GDT is applicable to exome and

genome sequence data and rare variants obtained from

genotyping arrays. VAT is an all-in-one software pipeline

package available for pre-processing data from various

input formats, and the RV-GDT package is implemented

to analyze rare-variant data exported by VAT. The RV-

GDT is implemented in Python, and the software package

and documentation are publicly available online.
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ADSP, https://www.niagads.org/adsp/content/home

ANNOVAR, http://annovar.openbioinformatics.org/en/latest/

CADD, http://cadd.gs.washington.edu/

dbNSFP, https://sites.google.com/site/jpopgen/dbNSFP

dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/
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